Nucleation and growth kinetics of zirconium-oxo-alkoxy nanoparticles.

نویسندگان

  • Sana Labidi
  • Zixian Jia
  • Mounir Ben Amar
  • Khay Chhor
  • Andrei Kanaev
چکیده

Nucleation and growth of zirconium-oxo-alkoxy (ZOA) nanoparticles were studied in a sol-gel process in n-propanol solution at a hydrolysis ratio H between 1.0 and 2.7 and zirconium-n-propoxyde precursor concentrations between 0.10 and 0.15 mol l(-1). The chemical transformations were conducted in quasi-perfect micromixing conditions (Damköhler number Da ≤ 1) and the nanoparticle size evolution was monitored in situ with the light scattering method. The size of primary nanoparticles (nuclei) 2R0 = 3.6 nm was found to be almost independent of the preparation conditions. A remarkable similarity with the titanium-oxo-alkoxy (TOA) nanoparticles was observed. In particular, both systems show the induction stage of the sol-gel growth for a hydrolysis ratio H > 2.0 and stable oxometallate units for H≤ 2.0. However in contrast to TOA, no stable hierarchical ZOA units (clusters) with R0≥R≥ 1.0 nm were observed, which makes this system less stable against aggregation, leading to polydispersed nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature effect on the nucleation and growth of TiO2 colloidal nanoparticles

The nucleation and growth of sol-gel derived TiO2 colloidal nanoparticles have been studied using  experiment and theory as well. In this study, the temperature effect on the formation of TiO2 nanoparticles was discussed and some effective parameters such as the supply rate of solute (Q0), the mean volumic growth rate of stable nuclei during the nucleat...

متن کامل

Synthesis of chitosan-zirconium magnetic nanofibers and its application for arsenic adsorption from wastewater: Kinetics and isotherms studies

Background and Objective:  Arsenic has long been considered as a heavy metal and toxic pollutant due to its potential to harm the human health and the environment. Adsorption is one of the mechanisms for arsenic removal from wastewater. Therefore, the purpose of this research was to investigate the feasibility of synthesized chitosan-zirconium magnetic nano fiber on arsenic adsorption from wast...

متن کامل

In situ scanning tunneling microscopy of oxide-supported metal clusters: nucleation, growth, and thermal evolution of individual particles.

An experimental approach was developed for imaging the nucleation and growth of individual oxide-supported nanoparticles and their subsequent in situ chemical and thermal treatments by scanning tunneling microscopy (STM). The potential of the method is demonstrated for Au nanoparticles supported on a reduced TiO(2) substrate where a cluster-by-cluster comparison is made of the morphological evo...

متن کامل

Study of Non-Isothermal Crystallization Kinetics of Biodegradable Poly(ethylene adipate)/SiO2 Nanocomposites

Poly(ethylene adipte) and poly(ethylene adipate)/silica nanocomposite (PEAd/SiO2) containing 3 wt. % SiO2  were prepared by an in situ method. The examinations on the non-isothermal crystallization kinetic behavior have been conducted by means of differential scanning calorimeter (DSC). The Avrami, Ozawa, and combined Avrami and Ozawa equations were applied to describe the crystallization kinet...

متن کامل

Population Balance Modelling of Zirconia Nanoparticles in Supercritical Water Hydrothermal Synthesis

Like any other precipitation process, in supercritical water hydrothermal synthesis (SWHS), the need to improve product quality and minimize production cost requires understanding and optimization of Particle Size Distribution (PSD). In this work, using Population Balance Equation (PBE) containing nucleation and growth terms, the reactive precipitation of zirconia nanoparticles prepared by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2015